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In engineering practice, the elastic moduli often used
are the Young’s modulus, rigidity modulus, Bulk mod-
ulus and Poisson’s ratio. Elastic data are used in indus-
try to determine strength of the materials. When, we
think about an application of any polycrystalline mate-
rial (viz. spinel ferrites, garnets, superconductors, per-
ovskites) subjected to some sort of mechanical stresses,
the knowledge of its magnetic, electric/dielectric re-
sponse and elastic properties help to decide suitability
of the material for specific application. From funda-
mental research points of view the knowledge of elastic
constants elucidate the nature of interatomic and inte-
rionic forces in solids.

The most conventional technique for elastic con-
stants and Debye temperature determination is the ul-
trasonic pulse transmission technique [1]. The sample
size required for such measurements is around 1 cm in
length. In the study of elastic properties of nanoparti-
cles, single crystal, irradiated or specially treated ma-
terials, where sample quantity is very small, such tech-
nique may not be useful. We have developed a new
method to study the elastic properties of spinel ferrite
material through infrared spectroscopy [2, 3], where
only a few milligram of material is sufficient for the
characterization.

The survey of literature shows that there is a scarcity
of adequate data on elastic properties of garnet system
except Debye temperature of single crystal YIG [4].
The present work reports the method of elastic con-
stants and Debye temperature determination for sub-
stituted garnet system in general and Fe3+ substituted
YIG: Y3−x Fe5+x O12 (x = 0.00, 0.15, 0.30, and 1.0) in
particular for the first time. To our knowledge no infor-
mation has been reported in literature regarding elastic
properties of Y3−x Fe5+x O12 system. This work is in
continuation of our work on structural properties [5]
and infrared spectral study [6] of the system.

The values of lattice constant, a, X-ray density, ρ,
and pore fraction, f , through X-ray diffraction analy-
sis [5] and band positions, υ, through IR spectral anal-
ysis [6] (Table I) are used to calculate elastic constants
corrected to zero porosity. The applicability of het-
erogeneous metal mixture rule [7, 8] has been tested.
The experimental details regarding sample preparation,
X-ray diffractometry and infrared spectroscopy have
been given elsewhere [5, 6].

The room temperature (300 K) infrared spectra for
Y3−x Fe5+x O12 were found to exhibit three bands in the
range 400–700 (102 m−1). The high frequency band

(υd) is caused by the stretching vibrations of the tetra-
hedral (d-site) metal-oxygen bond, the mid frequency
band (υa) is caused by the metal–oxygen vibrations in
octahedral (a-site) sites and the lower frequency band
(υc) is due to the dodecahedral (c-site) metal–oxygen
bond [6].

The force constant is a second derivative of potential
energy with respect to the site radius the other inde-
pendent parameters kept constant. The force constant
in terms of reduced mass (µ) and wave number (υ) is
given by:

k = 4π2c2 · υ2 · µ (1)

where c is the velocity of light (3 × 108 m/sec) and
µ is reduced mass of the composition calculated by
considering atomic weight and concentration of the
cations involved to the molecular weight of the com-
position (Table II). The force constants, for tetrahedral
site, kd, octahedral site, ka, and dodecahedral site, kc,
were calculated from Equation (1) using corresponding
band position value (Table I), and same are present in
Table II. The shifting of band towards lower frequency
side is accompanied with decrease in force constant
with Fe-substitution in the system; suggest weakening
of strength of interatomic bonding.

The bulk modulus B of solid in terms of stiffness
constant is defined as B = 1/3[C11 + 2C12], but ac-
cording to Waldron et al. [9] for isotropic materials
with cubic symmetry like spinel ferrites and garnets
C11 = C12, therefore B is simply given by C11. Fur-
ther, force constant (k) is a product of lattice constant
and stiffness constant [1]. The value of lattice constant
obtained from X-ray diffraction analysis (Table I) and
average force constant (k̄ = (kd + ka + kc)/3) has been
used for calculating B and is given in Table III. We
have determined the value of longitudinal elastic wave

TABLE I Lattice constant (a), X-ray density (ρ), bulk density (d),
pore fraction ( f ) and band position (υ) for Y-Fe-O system

(kg/m3) × 103 (m−1) × 102

Content x
a (nm)
± 0.0002 nm ρ d f υd υa υc

0.00 1.2332 5.23 4.30 0.178 656.5 604.1 572.5
0.15 1.2334 5.19 4.40 0.152 656.6 605.8 566.3
0.30 1.2330 5.16 4.44 0.139 656.8 606.0 565.9
1.00 1.2317 5.01 4.05 0.190 648.0 596.0 538.1
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TABL E I I Reduced mass (µ), force constant (k) and elastic wave velocity (V ) for Y-Fe-O system

(N/m) × 102 (m/s)

Content x
µ × 10−26

(kg/mole) kd ka kc k̄ Vl Vs Vm

0.00 1.1176 1.71 1.45 1.30 1.48 4799.82 2771.18 3076.56
0.15 1.1043 1.69 1.44 1.26 1.46 4778.73 2759.0 3063.04
0.30 1.0908 1.67 1.37 1.24 1.43 4738.31 2735.66 3037.13
1.00 1.0250 1.53 1.29 1.05 1.29 4572.92 2640.18 2931.12

TABL E I I I Bulk modulus (B), Young’s modulus (E), rigidity mod-
ulus (G), Poisson’s ratio (σ ) and Debye temperature (θ ) for Y-Fe-O
system

(GPa)

Content x B E G σ θ (K)

0.00 120.49 108.44 40.16 0.35 403.11
0.15 118.52 106.68 39.51 0.35 401.22
0.30 115.85 104.27 38.62 0.35 397.95
1.00 104.83 94.34 34.94 0.35 384.5

velocity Vl using the formula suggested by Waldron [9]:
Vl = (C11/ρ)1/2 and the transverse elastic wave veloc-
ity (Vs) by general approximation: Vl = 31/2 · Vs [2, 3].
The value of Vl and Vs are in the same order obtained
for various spinel ferrite systems [2, 3 and reference
there in].

The elastic moduli of the ferrite specimens are eval-
uated using the following formulae:

Rigidity modulus(G) = ρ · V 2
s

Poisson ratio(σ ) =
(

3B − 2G

6B + 2G

)

Young′s modulus(E) = (1 + σ ) 2G

The values of Vl and Vs were further used to calculate
mean elastic wave velocity (Vm) using the relation:

Vm =
[

3

(
V 3

l .V 3
s

V 3
s + 2V 3

l

)] 1
3

and the Debye temperature (θ ) value of all the gar-
nets have been calculated using the Anderson’s formula
[10]

θ = h

kB

[
3NA

4�VA

] 1
3

vm

where VA and NA are mean atomic volume given by
(M/q)/ρ, M, the molecular weight and q is the num-
ber atoms (i.e., 20) in the formula unit, NA is Avo-
gadro’s number, h and kB are Plank’s and Boltzmann’s
constant, respectively. The values of G, σ, E, Vm and
θ for all the compositions are included in Tables II
and III. It can be seen from Table III that B, E, G
and θ decrease continuously with increasing Fe3+ con-
tent (x). The Poisson’s ratio however remains con-
stants for different compositions. The value of σ is

found to be 0.35 for all the compositions. This value
lies in the range from −1 to 0.5, which is in confor-
mity with the theory of isotropic elasticity. Following
Wooster’s work [11], the variation of B, E, G and θ

with increasing Fe3+-content (x) may be interpreted
in terms of interatomic bonding. Thus, it can be in-
ferred from the decrease in elastic moduli and Debye
temperature with concentration (x) that the interatomic
bonding between various atoms is getting weakend
continuously.

In general, the samples prepared by solid-state reac-
tion method are found to be porous. The measured elas-
tic moduli do not have much significance unless they
are corrected to zero porosity. As the garnet specimens
under study are porous (pore fraction ≈ 0.14–0.19),
the values of elastic moduli have been corrected to zero
porosity using Hosselman and Fulrath’s formula [12]
given by

1

E0
=

{
1

E

[
1 − 3 f (1 − σ )(9 + 5σ )

2(7 − 5σ )

]}

1

G0
=

{
1

G

[
1 − 15 f (1 − σ )

(7 − 5σ )

]}

B0 = ρ(2V 2
s /(1 − 2σ ) + Vs)

2

σ0 = E0

2G0
− 1

The corrected values of Young’s modulus (E0), rigid-
ity modulus (G0), bulk modulus (B0) and Poisson’s ra-
tio (σ0) for different compositions are given in Table IV.
The value of E0, G0 and B0 show regular variation sim-
ilar to that E, G and B (Table III).

Recently we have developed and successfully imple-
mented heterogeneous-metal-mixture rule (MMMR) to
estimate elastic constants of various spinel ferrites, su-
perconductors and perovskites [7, 8]. The validity of
this model for estimating elastic moduli of various gar-
net compositions has been tested. It is always desirable

TABLE IV Elastic moduli (corrected to zero porosity) (B0, E0, G0)
and from MMMR (B∗, E∗, G∗, θ∗) for Y-Fe-O system

(GPa) (GPa) (MMMR)

Content x B0 E0 G0 σ0 B∗ E∗ G∗ θ∗ (K )

0.00 157.21 168.21 59.99 0.40 119.85 155.87 61.00 398.75
0.15 154.62 153.16 55.05 0.39 124.13 158.63 62.5 402.31
0.30 151.13 144.32 52.06 0.39 124.84 161.38 63.1 405.87
1.00 136.63 151.99 53.99 0.41 137.75 174.25 68.0 422.5
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to have general idea of elastic constants value before
synthesis and its characterization, in order to tailor the
properties. According to this model “The elastic con-
stant and Debye temperature value of polycrystalline
oxide material (K ′

pm) is equal to the average stoichio-
metric compositional addition of elastic constant val-
ues of metallic elements present in the material”. The
elastic moduli such as bulk modulus, rigidity mod-
ulus, Young’s modulus and Debye temperature val-
ues of various metallic elements (Y and Fe in present
case) are taken from the literature [13–15] and are
used to estimate K ′

pm. The elastic constant value, to
be estimated, for a given garnet system can be given
as:

K ′
pm = 1/n ∞

∑
Cin · Kn i > 0, n = 1

where, K ′
pm is either Bulk modulus (B), Young’s modu-

lus (E), rigidity modulus (G) or Debye temperature (θ )
of the polycrystalline system Y3−x Fe5+x O12 to be esti-
mated, n is the total concentration of metallic cations
involved in the chemical formula of the polycrystalline
material (n = 8), Cin, concentration of the nth cation in
the formula unit while Kn is the corresponding modulus
of the metallic element.

The values of elastic moduli (B∗, E∗, G∗) and De-
bye temperature (θ∗) obtained from MMM rule are
summarized in Table IV. The results of our calcula-
tions are in conformity with the elastic constant val-
ues obtained from IR spectral analysis with adequate
accuracy.

In conclusion, the elastic moduli and Debye temper-
ature can be determined through IR spectral analysis.
The observed decrease of elastic constants with Fe-
substitution suggests weakening of interatomic bond-
ing. The reasonable agreement between elastic moduli
corrected to zero porosity and calculated using metal-
mixture rule, validates of the method used for the garnet
system.

One of the authors (KBM) is thankful to A.I.C.T.E,
New Delhi for providing financial assistance in the form
of career award for young teachers (2004).

Appendix

Illustrative calculations for elastic constant and Debye temperature
determination through MMM rule.

(i) Y2Fe6O12 (x = 1.0)
B ′

pm = 1/8[(2) 41.6 GPa + (6) 169.8 GPa] Ref. [15]
B ′

pm = 137.75 GPa (MMMR)
B0 = 136.63 GPa (IR)

(ii) Y2.85Fe5.15O12 (x = 0.15)
θ ′

pm = 1/8[(2.85) · 280 K + (5.15) · 470 K] Ref. [14]
θ ′

pm = 402.31 K (MMMR)
θ = 401.22 K (IR)
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